Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol ; 52(9): 591-601, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35671792

RESUMO

Approximately 2 billion people worldwide and a significant part of the domestic livestock are infected with soil-transmitted helminths, of which many establish chronic infections causing substantial economic and welfare burdens. Beside intensive research on helminth-triggered mucosal and systemic immune responses, the local mechanism that enables infective larvae to cross the intestinal epithelial barrier and invade mucosal tissue remains poorly addressed. Here, we show that Heligmosomoides polygyrus infective L3s secrete acetate and that acetate potentially facilitates paracellular epithelial tissue invasion by changed epithelial tight junction claudin expression. In vitro, impedance-based real-time epithelial cell line barrier measurements together with ex vivo functional permeability assays in intestinal organoid cultures revealed that acetate decreased intercellular barrier function via the G-protein coupled free fatty acid receptor 2 (FFAR2, GPR43). In vivo validation experiments in FFAR2-/- mice showed lower H. polygyrus burdens, whereas oral acetate-treated C57BL/6 wild type mice showed higher burdens. These data suggest that locally secreted acetate - as a metabolic product of the energy metabolism of H. polygyrus L3s - provides a significant advantage to the parasite in crossing the intestinal epithelial barrier and invading mucosal tissues. This is the first and a rate-limiting step for helminths to establish chronic infections in their hosts and if modulated could have profound consequences for their life cycle.


Assuntos
Nematospiroides dubius , Infecções por Strongylida , Acetatos , Animais , Claudinas , Ácidos Graxos não Esterificados , Humanos , Mucosa Intestinal , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Solo , Infecções por Strongylida/parasitologia
2.
Arterioscler Thromb Vasc Biol ; 36(1): 122-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26564819

RESUMO

OBJECTIVE: Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation. APPROACH AND RESULTS: We produced Mfap4-deficient (Mfap4(-/-)) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular biology in vivo. Furthermore, we investigated the effects of MFAP4 in neointimal formation ex vivo and in primary VSMC and monocyte cultures in vitro. When challenged with carotid artery ligation, Mfap4(-/-) mice exhibited delayed neointimal formation, accompanied by early reduction in the number of proliferating medial and neointimal cells, as well as infiltrating leukocytes. Delayed neointimal formation was associated with decreased cross-sectional area of ligated Mfap4(-/-) carotid arteries resulting in lumen narrowing 28 days after ligation. MFAP4 blockade prohibited the formation of neointimal hyperplasia ex vivo. Moreover, we demonstrated that MFAP4 is a ligand for integrin αVß3 and mediates VSMC phosphorylation of focal adhesion kinase, migration, and proliferation in vitro. MFAP4-dependent VSMC activation was reversible by treatment with MFAP4-blocking antibodies and inhibitors of focal adhesion kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVß3-dependent manner. CONCLUSIONS: MFAP4 regulates integrin αVß3-induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular injury.


Assuntos
Doenças das Artérias Carótidas/metabolismo , Proteínas de Transporte/metabolismo , Movimento Celular , Proliferação de Células , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Animais , Apoptose , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Proteínas de Transporte/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Genótipo , Glicoproteínas/deficiência , Glicoproteínas/genética , Humanos , Hiperplasia , Integrina alfaVbeta3/metabolismo , Ligantes , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Fenótipo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Fatores de Tempo , Remodelação Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...